End Semester / Reappear (Semester III) Examination Dec 2022

Programme: B. Pharm
Course: Physical Pharmaceutics I
Course Code: BP302T
Enrollment No: \qquad

Section I

1. Objective type questions. Answer all questions.

Full Marks: 75
Time: 3 Hrs
i. An example of a solute is
(a) Sugar
(b) Egg whites
(c) Water
(d) Acetone
ii. When a saturated solution prepared at a higher temperature is cooled, we get
(a) Super cooled solution
(b) Super saturated solution
(c) An equilibrium mixture
(d) One molar solution
iii. Which of the following is an example of a non-ideal solution showing positive deviation?
(a) Chloroform + Benzene
(b) Chlorobenzene + Bromobenzene
(c) Acetone + Carbon disulphide
(d) Acetone + Aniline
iv. The equation $\mathrm{C} 1 / \mathrm{C} 2=\mathrm{K}$ is known as
(a) Distribution ratio
(b) Partition coefficient
(c) Distribution coefficient
(d) Distribution law
v. The constant quantity of Boyle's Law is
(a) Mass and temperature of a gas
(b) Only mass of the gas
(c) Only temperature of a gas
(d) Mass and Pressure of a gas
vi. NaCl possess which shape?
(a) Tetragonal
(b) Cubic
(c) Hexagonal
(d) Rhombic
vii. The ratio of the speed of light in air to the speed of light in the medium is called
(a) Dielectric constant
(b) Viscosity
(c) Refractive index
(d) Surface tension
viii. The species with a maximum dipole among the following is
(a) NF_{3}
(b) CO_{2}
(c) CH_{4}
(d) NH_{3}
ix. The spreading coefficient (S) is given by following equation
(a) $\mathrm{Wa}-\mathrm{Wc}=\Upsilon L+\Upsilon S-\Upsilon L S-2 \Upsilon L$
(b) $S=\Upsilon L+\Upsilon S-\Upsilon L S$
(c) $S=\Upsilon S-(\Upsilon L+\Upsilon L S)$
(d) All of these
x. If common salt is dissolved in water then the surface tension of salt water is
(a)Decreased
(b) Increased
(c) No change
(d) First increase then decrease
xi. O/W emulsifer have HLB value
(a) 15-18
b) 7-9
(c) 8-16
(d) 13-15
xii. Solubility curve is a curve drawn between
(a) Solubility and temperature
(b) Solubility and pressure
(c) Solubility and mole fraction
(d) None of these
xiii. Example of chelate
(a) Haemoglobin
(b) Iodine
(c) Ferrocene
(d) Cisplatin
xiv. When more and more water is diluted with acids its $\mathrm{H}+$ ion concentration will
(a) Increase
(b) Decrease
(c) Remains the same
(d) Depends on the type of acids xv . This is not an acidic buffer
(a) $\mathrm{H}_{2} \mathrm{CO}_{3}$ and $\mathrm{Na}_{2} \mathrm{CO}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{COOH}$ and $\mathrm{CH}_{3} \mathrm{COONa}$
(c) HClO_{4} and NaClO_{4}
(d) $\mathrm{H}_{3} \mathrm{PO}_{4}$ and $\mathrm{Na}_{3} \mathrm{PO}_{4}$
xvi. Solutions exerting osmotic pressure similar to that of the cell contents being analysed are called
(a) Hypertonic soln
(b) Isotonic soln
(c) Hypotonic soln
(d) None of these
xvii. According to Freundlich adsorption isotherm, which of the following is correct?
(a) $\mathrm{x} / \mathrm{m} \alpha \mathrm{pl} / \mathrm{n}$
(b) $\mathrm{x} / \mathrm{m} \alpha \mathrm{p} 1$
(c) $x / m \alpha p^{o}$
(d) All are correct at different ranges of pressure
xviii. Stoke's falling sphere method is used to measure
(a) Surface tension
(b) Viscosity
(c) Interfacial rension
(d) Vapour pressure
xix. Flux is directly proportional to concentration gradient, is statement of
(a) Fick's first law of diffusion
(b) Fick's second law of diffusion
(c) Higuchi's equation
(d) pH -Partition hypothesis
xx . The molar volume of a liquid at a temperature at which its surface tension is unity is called
(a) Parachor
(b) Rheochor
(c) Vapour pressure
(d) Viscosity

Section II

2. Short Answer type questions. Answer any five.

5x7=35
a. Explain real solutions with examples.
b. Define a complex. Classify with example.
c. Define dielectric constant. Write a note on its applications in pharmacy.
d. Explain Griffin's scale in detail.
e. Write in detail electrometric determination of pH .
f. Write a note on Henderson-Hasselbalch equation.
g. What are buffer solutions. Derive buffer equation for a weak acid and its salt.

Section III

Long Answer type questions. Answer any two.
$2 \times 10=20$
3. State and explain Distribution law. Mention its limitations and applications
4. Define surface tension. Discuss the principle involved in capillary rise method.
5. Define refractive index. Discuss the working of Abbe's refractometer.

